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Abstract 

The truncated Chebyshev polynomial provides a reliable 
scheme for the automatic determination of empirical weights 
for least-squares structure refinement when the errors are a 
function of I Fol. 

The correct approach to least-squares refinement where the 
observations are not statistically independent of each other is 
through a properly determined weight matrix (Hamilton, 
1964). In practice, however, the information needed to 
construct this matrix is not readily available and, even if it 
were, the cost of using it in least-squares refinement would be 
prohibitive. We therefore have to make approximations 
about the way our observations are weighted, and various 
approaches have been used. Early schemes to devise suitable 
weights included the use of simple analytic expressions that 
were believed to reflect the likely distribution of errors 
(Hughes, 1941), and this was quite adequate for photo- 
graphic data. The use of quantum counters for measuring X- 
ray reflexions introduced the possibility of using weights 
based on counting statistics, but except in very favourable 
cases w = 1/02 was not entirely satisfactory, so that 
additional correction terms were introduced (Cruickshank, 
1970). The values of the coefficients for these terms, like 
those for the analytic expressions, were derived by examining 
(I/7ol - I Fcl) 2 for systematic trends. 

Our approach to the problem was, like that of Nielson 
(1977), to confess that we did not know the source or form of 
all the errors in an experiment, but to believe that they could 
be represented by a smooth function in a suitable parameter 
space. We also hoped that, when we had included in our 
model all the variables needed to describe it to the accuracy 
of the experimental data, ,d 2 l = (I F 01 - I Fcl)2] for groups of 
related reflexions indicated the weight to be associated with 
those reflexions. This means that the weight to be given to a 
particular reflexion at some stage in the refinement will reflect 
not only errors in the data, but shortcomings in the model 
being fitted. This is merely acknowledging the 'requirement 
that the average wA 2 must be constant when the set of wA 2 
values for a given structure is analysed in any significant 
systematic fashion' (Cruickshank, 196 l). 

We therefore tried to fit ,d E to power series in If01, sin 0/2 
and combinations of IFol and sin 8/2. This work (Hodder & 
Watkin, 1968) failed largely through ill-conditioning of the 
normal equations and unsuitable weighting of the obser- 
vations used in the process. The analysis was stabilized by 
using Chebyshev polynomials fitted to (,dE) with weights 
w = 1/IFol". 

Results obtained over the last five years seem to have 
vindicated this process. The procedure we follow is to refine 
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the structure with unit weights until all the necessary 
parameters have been included, and then look at the distri- 
bution of <d 2 ) with I gol and sin 0/~.. If, as is commonly the 
case, the distribution shows a smooth trend, we fit a number 
of Chebyshev polynomials in Ifol, and look at the resulting 
(wA 2 > distributions. The polynomial with the least coeffi- 
cients to give a satisfactory fit is accepted, a little more 
structure refinement done, weights recalculated for the new 
model, and the model then refined to convergence. It is rarely 
necessary to determine weights a third time. 

Fig. 1 gives examples of weights determined by this 
process (Prout & Couldwell, 1977) for equal-times obser- 
vations on a four-circle diffractomer. R at this stage, the 
end of unit weight refinement, was 7.74%. The curves are all 
smooth, and resemble Hughes's original scheme. Note how- 
ever that maximum weight is given to medium size reflexions. 
Table 1 lists (wd2> as a function of I Fol and (sin 8/2) 2, and 
in this case the three term scheme is adequate. 

600"  

500- 

400" 

l /w  

o 3 term polynomial 
• 4 term 
- l /w  = F o 

o.  

300" o' 

o 

o 

200" 

J 

100- 

- o • . j ~ l ~  o t .  a .O ~ 
I , , , ,  . . . .  | r , ' ' ' " ' I  ' ' ' ' '  

1 10  100  FO  

Fig. l. Plot of  l / w  v e r s u s  I Fol. Abscissa plotted on logarithmic 
scale• 

@ 1979 International Union of Crystallography 



S H O R T  C O M M U N I C A T I O N S  699 

Table 1. Mean values o f  zF and wd 2 as a function o f  IFol 
and (sin 0/2) 2 

(1) <A2); (3), (4), (5) <w,62> for three, four and five term Chebyshev 
polynomials. 

(1) (3) (4) (5) 

Number of 
reflexions ( i Fo l ) ( A 2> 

78 8.7 7.54 1.53 1.45 1.46 
1003 11.9 2.99 0.82 0.84 0.84 
498 19.8 2-12 1.23 1.63 1.62 
234 29.6 3-47 1.78 1.78 1.84 

96 43.4 10.09 1.46 1.21 1.24 
58 56.0 14.97 0-78 0.66 0.66 
28 70.1 35.50 0.88 0.77 0.77 

4 93.3 98.90 1.20 1.14 1-11 
5 100.6 75.46 0-65 0.64 0.62 
0 . . . . .  
1 172.7 753.8 2.11 2.63 2.55 
0 . . . . .  
1 231.8 228.2 0.33 0-53 0.55 

((sin 0/,!.)2> 

91 0.2 29.44 1.94 1.89 1.91 
163 0.28 11.93 1.47 1.51 1.52 
196 0.35 4.24 1.19 1.27 1.28 
216 0.40 2.77 1.21 1.35 1.35 
250 0.45 2.39 1.07 1.19 1.20 
247 0.49 2.16 0.89 1.01 1.01 
251 0.53 2.46 0.93 1.04 1.04 
243 0.57 2.54 0.75 0.80 0-80 
158 0.60 3.95 1.03 1 "05 1.05 
109 0.63 4.49 1.09 1-08 1.08 
82 0.66 6.18 1-52 1-51 1.51 

We wish to make (wA2> constant as a function of IFol, and 
represent l /w  as a truncated Chebyshev polynomial, so that 

1/<w> = <A2> = Y. aiT*(F ). (I) 
i 

If we let 

G = 2 * F - -  1, 

Tg(r) = I, 
and 

TT(F) = G, 
then 

T*(F)  = [2*G*T*_, (F)}-  T*_2(F) (Rollett, 1965). 

The Chebyshev coefficients, a i, are to be determined, and are 
found by minimizing 

M = Z w+(A*) 2 

= ~ w*[d 2 -- Z a y ~ ( F ) l  2 
i 

over all reflexions. The weights used in this minimization are 
w* = (l/Fmax)P/(l + Foe), in which P is usually 2. The 
elements of the normal matrix are given by 

Z w* T?(F) T?(F), 

and the elements of the vector by 

Y w* TI'(F)d .2, 
where the summation is over all reflexions. The normal 
equations are solved for the Chebyshev coefficients, a i, and 
the weights are then found from (1). 

This empirical weighting scheme is never used to mask 
correctable errors in the data, such as absorption, nor to 
evade the refinement of parameters, such as extinction, that 
could be resolved with the available data. It does however 
provide a reproducible method for obtaining weights satisfy- 
ing Cruickshank's criterion from the available data for the 
parameters being refined. 

The program is not readily available for other laboratories 
since it is part of the integrated crystallographic package, 
CR Y S T A L S  (Carruthers, 1975). The Appendix outlines the 
computations involved. 

APPENDIX 

F= IFolllFol,.., v 
A = ]Fol - I Fcf , F o and F c on same scale. 
w -- weight used in model refinement. 
A* = d 2 - 1/w. 
w* = weight used in determining Chebyshev coefficients. 
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